64x^2=520

Simple and best practice solution for 64x^2=520 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 64x^2=520 equation:



64x^2=520
We move all terms to the left:
64x^2-(520)=0
a = 64; b = 0; c = -520;
Δ = b2-4ac
Δ = 02-4·64·(-520)
Δ = 133120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{133120}=\sqrt{1024*130}=\sqrt{1024}*\sqrt{130}=32\sqrt{130}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{130}}{2*64}=\frac{0-32\sqrt{130}}{128} =-\frac{32\sqrt{130}}{128} =-\frac{\sqrt{130}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{130}}{2*64}=\frac{0+32\sqrt{130}}{128} =\frac{32\sqrt{130}}{128} =\frac{\sqrt{130}}{4} $

See similar equations:

| 2(2x+3)+3(5x+1)=-29 | | 2/3x-4=-3x+7 | | 2(2x+3)+4(5x+1)=-29 | | 70=8m+-26 | | 92=-4(2r@- | | 3=v45 | | -4(x+4)+16=36 | | -5(4x-4)=2x-24 | | -4(2x-4)-2x=-34 | | 27=a/6+17 | | -5(x+1)=-3x-14+3 | | -5(x+1)=-3x-14+3 | | -5(x+1)=-3x-14+3 | | -5(x+1)=-3x-14+3 | | 3(x-2)-2x=-15 | | 4(x-1)-1=-4x+19 | | -1.5r-11.07=3r-12.87 | | 1/3(y−6)=2y−3 | | -24/8-5=y | | 157=-u+262 | | 2(-4x+5)=4x-50 | | -v+21=205 | | -4(x+5)-1=-3x-13 | | Y=100+0,8q-0,02q2 | | 7=-2.9x+49.2 | | 4x(3/2)=32 | | 5x^2−12=178 | | a/0.54=6.2 | | -2(-x-1)+3=25 | | 5p-50=-2p | | -3(x+5)-x=17 | | 4+2(6u-8)=-2(2u-3)+4u |

Equations solver categories